亚洲视频综合-亚洲视频综合网-亚洲视色-亚洲手机在线-欧美真人毛片动作视频-欧美真人视频一级毛片

13066963301

新聞資訊

news
新聞資訊
首頁(yè) -新聞資訊 -行業(yè)新聞 -全球四大衛(wèi)星導(dǎo)航系統(tǒng)淺析

全球四大衛(wèi)星導(dǎo)航系統(tǒng)淺析

發(fā)布時(shí)間:2021-12-29作者來(lái)源:金航標(biāo)瀏覽:5071


全球4大衛(wèi)星導(dǎo)航系統(tǒng)淺析


摘要:為進(jìn)一步研究衛(wèi)星導(dǎo)航系統(tǒng),對(duì)現(xiàn)有4大全球衛(wèi)星導(dǎo)航系統(tǒng)進(jìn)行對(duì)比分析:從星座、信號(hào)體制、坐標(biāo)和時(shí)間系統(tǒng)以及服務(wù)性能等方面,對(duì)北斗衛(wèi)星導(dǎo)航系統(tǒng)(BDS)、全球定位系統(tǒng)(GPS)、伽利略衛(wèi)星導(dǎo)航系統(tǒng)(Galileo)和格洛納斯衛(wèi)星導(dǎo)航系統(tǒng)(GLONASS)進(jìn)行對(duì)比;指出BDS的優(yōu)勢(shì)。結(jié)果表明:BDS在系統(tǒng)星座和信息編碼上有較大優(yōu)勢(shì),系統(tǒng)服務(wù)性能與GPS和Galileo相當(dāng),并優(yōu)于GLONASS;BDS基于地球靜止軌道(GEO)、傾斜地球同步軌道(IGSO)及中圓地球軌道(MEO)的星座分布,可提升亞太地區(qū)的定位精度和可用性;BDS采用的64進(jìn)制低密度奇偶校驗(yàn)(LDPC)編碼優(yōu)于其他系統(tǒng)的編碼方式,相比GPS的二進(jìn)制LDPC編碼,可帶來(lái)0.6~1.2 dB的額外增益。

關(guān)鍵詞:全球衛(wèi)星導(dǎo)航系統(tǒng);系統(tǒng)星座;信號(hào)體制;坐標(biāo)系統(tǒng);系統(tǒng)時(shí);服務(wù)性能



0  引言


目前有4大全球衛(wèi)星導(dǎo)航系統(tǒng)(global navigation satellite system, GNSS),包括中國(guó)的北斗衛(wèi)星導(dǎo)航系統(tǒng)(BeiDou navigation satellite system, BDS)、美國(guó)的全球定位系統(tǒng)(global positioning system, GPS)、歐盟的伽利略衛(wèi)星導(dǎo)航系統(tǒng)(Galileo navigation satellite system, Galileo)和俄羅斯的格洛納斯衛(wèi)星導(dǎo)航系統(tǒng)(global orbiting navigation satellite system, GLONASS)。其中,BDS和GPS已服務(wù)全球,性能相當(dāng);功能方面,BDS較GPS多了區(qū)域短報(bào)文和全球短報(bào)文功能。GLONASS雖已服役全球,但性能相比BDS和GPS稍遜,且GLONASS軌道傾角較大,導(dǎo)致其在低緯度地區(qū)性能較差。Galileo的觀測(cè)量質(zhì)量較好,但星載鐘穩(wěn)定性稍差,導(dǎo)致系統(tǒng)可靠性較差。 


GNSS主要由空間段、地面段和用戶段組成,其工作原理如下:

1)空間段中依據(jù)星座分布的導(dǎo)航衛(wèi)星,接收地面段上行注入的時(shí)鐘修正、星歷等信息進(jìn)行信號(hào)調(diào)制,并按規(guī)定的信號(hào)體制向地面廣播信號(hào)。

2)地面段對(duì)空間衛(wèi)星進(jìn)行跟蹤維護(hù),并監(jiān)測(cè)衛(wèi)星的健康狀況,評(píng)估衛(wèi)星及信號(hào)的完好性,確定衛(wèi)星的運(yùn)行軌道,并將衛(wèi)星的鐘差修正量、星歷、歷書(shū)、電離層校正參數(shù)等信息按特定頻度上行注入到衛(wèi)星。

3)用戶段接收各可見(jiàn)衛(wèi)星的信號(hào),并根據(jù)跟蹤信號(hào)獲得的觀測(cè)量和解調(diào)信號(hào)獲得的星歷、時(shí)間信息進(jìn)行位置、速度、時(shí)間(position velocity time, PVT)解算,確定用戶的位置、速度和時(shí)間信息。導(dǎo)航系統(tǒng)空間段主要包括2方面重要特性:
①表征衛(wèi)星空間分布的空間星座;
②衛(wèi)星廣播信號(hào)的特性。就整個(gè)系統(tǒng)而言,用戶最關(guān)心的是其服務(wù)性能。本文主要對(duì)GNSS的空間星座、信號(hào)體制、坐標(biāo)和時(shí)間系統(tǒng)以及服務(wù)性能進(jìn)行對(duì)比,并在此基礎(chǔ)上對(duì)BDS的特點(diǎn)進(jìn)行分析。

1  GNSS星座對(duì)比分析


衛(wèi)星導(dǎo)航系統(tǒng)空間星座的要素主要包括星座類(lèi)型、衛(wèi)星類(lèi)型、衛(wèi)星數(shù)量、軌道高度、軌道傾角等。GPS、Galileo和GLONASS的星座分布大體相同,且衛(wèi)星均為中圓地球軌道(medium Earth orbit, MEO)衛(wèi)星。而B(niǎo)DS星座則包括MEO衛(wèi)星、傾斜地球同步軌道(inclined geo-synchronous orbit, IGSO)衛(wèi)星和地球靜止軌道(geostationary orbit, GEO)衛(wèi)星。BDS的3顆GEO衛(wèi)星位于赤道上空,分別分布在80°E、110.5°E和140°E上。BDS的3顆IGSO衛(wèi)星分布在3個(gè)軌道面[3]。BDS的24顆MEO衛(wèi)星均勻分布于3個(gè)軌道面,星下點(diǎn)軌跡覆蓋全球。通過(guò)MEO/IGSO/GEO星座布局,BDS可以極大提升亞太地區(qū)BDS衛(wèi)星的可見(jiàn)性,進(jìn)而提升BDS的定位精度和可用性。


衛(wèi)星導(dǎo)航系統(tǒng)名稱(chēng)

不同衛(wèi)星導(dǎo)航系統(tǒng)的導(dǎo)航衛(wèi)星參數(shù)

星座類(lèi)型

衛(wèi)星
類(lèi)型

不同類(lèi)型衛(wèi)星數(shù)量

不同類(lèi)型衛(wèi)星軌道高度/km

不同類(lèi)型衛(wèi)星
軌道傾角/(°)

不同類(lèi)型衛(wèi)星
軌道運(yùn)行周期

軌道面
數(shù)目

星座分布重復(fù)周期

(次/天)

BDS

MEO的星座為瓦爾克(Walker )型24/3/1

GEO

IGSO

MEO

3

3

24

35 786

35 786

21 528

55

55

23 h 56 min 4 s

12 h 55 min

3

13/7

(7天重復(fù)13次)

GPS

非Walker型星座

MEO

24

20 200

55

11 h 58 min

6

2/1

(1天重復(fù)2次)

Galileo

Walker型星座24/3/1

MEO

24

23 222

56

14 h 4 min 45 s

3

17/10

(10天重復(fù)17次)

GLONASS

Walker型星座 24/3/2

MEO

24

19 100

64.8

11 h 15 min 44 s

3

17/8

(8天重復(fù)17次)

                                          表1  全球衛(wèi)星導(dǎo)航系統(tǒng)空間星座對(duì)比


2  GNSS體制對(duì)比分析


4大衛(wèi)星導(dǎo)航系統(tǒng)各有特點(diǎn),就多址機(jī)制而言,BDS、GPS和Galileo的多址機(jī)制為碼分多址(code division multiple access, CDMA),GLONASS的多址機(jī)制目前為頻分多址(frequency division multiple access, FDMA),其現(xiàn)代化計(jì)劃往CDMA發(fā)展。就信號(hào)分量而言,除了一些授權(quán)或特殊用途的專(zhuān)有的信號(hào)分量,BDS、GPS和Galileo經(jīng)過(guò)長(zhǎng)期研究和協(xié)調(diào),在民用公開(kāi)信號(hào)上達(dá)成了兼容互操作的合作協(xié)議,實(shí)現(xiàn)了BDS B1C、B2a分別與GPS L1、L5和Galileo E1、E5a之間的互操作,可大幅提升衛(wèi)星導(dǎo)航系統(tǒng)服務(wù)性能并降低多系統(tǒng)用戶終端的研制成本。表2主要從信號(hào)頻率、信號(hào)支路、調(diào)制方式、信息編碼方式、符號(hào)速率和信號(hào)帶寬等方面對(duì)4大衛(wèi)星導(dǎo)航信號(hào)體制進(jìn)行比較和分析,以便讀者對(duì)各系統(tǒng)的信號(hào)進(jìn)行全面系統(tǒng)的了解。


系統(tǒng)名

信號(hào)

信號(hào)
分量

載波頻率/MHz

調(diào)制方式

信息編碼方式

符號(hào)率(以“每秒

采樣次數(shù)”表示)

主瓣帶
寬/MHz

播發(fā)衛(wèi)星類(lèi)型

BDS

B1I

I路

1 561.098

BPSK(2)

BCH(15,11,1)+交織

50

2.046 0

GEO/IGSO/MEO

B1C

B1C_data

1 575.420

BOC(1,1)

BCH(21,6)+BCH(51,8)+64進(jìn)制LDPC(200,100)+64進(jìn)制LDPC(88,44)+交織

100

32.736 0

IGSO/MEO

B1C_pilot

QMBOC(6,1,4/33)

0

B2a

B2a_data

1 176.450

QPSK(10)

64進(jìn)制LDPC(96,48)

200

20.460 0

IGSO/MEO

B2a_pilot

0

B2b

I路

1 207.140

QPSK(10)

64進(jìn)制LDPC(162,81)

1000

20.460 0

IGSO/MEO

B3I

I路

1 268.520

QPSK(10)

BCH(15,11,1)+交織

50

20.460 0

GEO/IGSO/MEO

GPS

L1

C/A

1 575.420

BPSK(1)

漢明碼(32,26)

50

2.046 0

MEO

P(Y)

BPSK(10)

加密

50

20.460 0

M

BOC(10,5)

加密

30.690 0

L1C

L1C-D

1 575.420

BOC(1,1)

CRC-24Q+BCH(51,8)+二進(jìn)制LDPC(1200,600)+塊交織

100

4.092 0

MEO

L1C-P

TMBOC(6,1,4/33)

14.332 0

L2

P(Y)

1 227.600

BPSK(10)

加密

50

20.460 0

MEO

C

BPSK(1)

CRC-24Q+卷積編碼(600,300)

50

2.046 0

M

BOC(10,5)

加密

30.690 0

L5

L5C

1 176.450

QPSK(10)

CRC-24Q+卷積編碼(600,300)

100

20.460 0

MEO

L5Q

加密


Galileo

E1

E1-A

1 575.420

BOCCOS(15,2.5)

加密

100

35.805 0

MEO

E1-B

CBOC(6,1,1/11,’+’)

CRC-24Q+卷積編碼(240,120)+交織


4.092 0

E1-C

CBOC(6,1,1/11,’+’)


4.092 0

E5a

E5a-I

1 176.450

AltBOC(15,10)

CRC-24Q+卷積編碼(488,244)+交織

50

51.150 0

MEO

E5b

E5b-I

1 207.140

CRC-24Q+卷積編碼(240,120)+交織

250

E6

E6-A

1 278.750

BOCCOS(10,5)

加密

100

30.690 0

MEO

E6-B

BPSK(5)

加密

1000

10.230 0

E6-C

BPSK(5)

10.230 0

GLONASS

G1

1 598.0 625~1 605.375

BPSK

漢明碼

100

8.334 5

MEO

G2

1 242.9 375~1 248.625

BPSK

漢明碼

100

6.709 5

                                           表2  GNSS信號(hào)體制對(duì)比[4-9]

表2中:BPSK(binary phase shift keying)表示二相移相鍵控;QMBOC(quadrature multiplexed binary offset carrier)表示正交復(fù)用二進(jìn)制偏移載波調(diào)制;TMBOC(time multiplexed binary offset carrier)表示時(shí)分復(fù)用二進(jìn)制偏移載波;CBOC(composite binary offset carrier)表示復(fù)合二進(jìn)制偏移載波;BCH(Bose Chaudhuri Hocquenghem)表示Bose、Chaudhuri及Hocquendhem各自獨(dú)立發(fā)現(xiàn)的二元線性循環(huán)碼;CRC(cyclic redundancy check)表示循環(huán)冗余校驗(yàn)。
從表2中可以看出,BDS的B1C信號(hào)、GPS的L1C信號(hào)和Galileo的E1信號(hào)工作在1 575.42 MHz,且調(diào)試方式均為二進(jìn)制偏移載波(binary offset carrier, BOC)類(lèi)調(diào)制;BDS的B2a信號(hào)、GPS的L5信號(hào)和Galileo的E5a信號(hào)工作在1 176.45 MHz,其中B2a和L5為正交相移鍵控(quadrature phase shift keying, QPSK)調(diào)制方式,E5a為交替二進(jìn)制偏移載波調(diào)制(alternate binary offset carrier, AltBOC)調(diào)制方式。頻率的一致性以及調(diào)制方式的類(lèi)似,為GNSS的兼容互操作創(chuàng)造了先決條件,目前在1 575.42 MHz上已可以非常好地做到兼容互操作。在導(dǎo)航電文設(shè)計(jì)上,BDS將64進(jìn)制低密度奇偶校驗(yàn)(low density parity check, LDPC)編碼作為重要特色引入了導(dǎo)航電文編碼,其編譯碼方案均由中國(guó)自主研發(fā),性能相比GPS的二進(jìn)制LDPC編碼有較大提升。64進(jìn)制LDPC編碼和二進(jìn)制LDPC編碼的復(fù)雜程度基本一致;在譯碼方面,64進(jìn)制譯碼復(fù)雜程度為二進(jìn)制譯碼的6倍左右。誤碼率在1×10-5的條件下,64進(jìn)制LDPC編碼增益比二進(jìn)制LDPC編碼增益高0.6~1.2 dB,這為用戶終端的冷啟動(dòng)相關(guān)指標(biāo)提升帶來(lái)了相當(dāng)可觀的益處。

3  GNSS坐標(biāo)和時(shí)間系統(tǒng)對(duì)比分析


3.1  坐標(biāo)系統(tǒng)對(duì)比分析


衛(wèi)星導(dǎo)航系統(tǒng)坐標(biāo)系尤為重要,由衛(wèi)星星歷參數(shù)和歷書(shū)參數(shù)計(jì)算得到的衛(wèi)星位置和衛(wèi)星速度都直接在系統(tǒng)坐標(biāo)系中表征。系統(tǒng)坐標(biāo)系定義了建立相應(yīng)大地坐標(biāo)系所需的基準(zhǔn)橢球體,描述了與大地水準(zhǔn)面相應(yīng)的地球重力場(chǎng)模型,并提供了修正后的基本大地參數(shù)。各系統(tǒng)修正后的基本大地參數(shù)如表3所示。


系統(tǒng)名

坐標(biāo)系名

坐標(biāo)系參數(shù)

橢球長(zhǎng)半徑/m

扁率

地心引力常數(shù)/

地球自轉(zhuǎn)角速度/

BDS

BDCS

6 378 137.00

1/298.257 222 101

3.986 004 418

7.292 115

GPS

WGS84

6 378 137.00

1/298.257 223 563

3.986 004 418

7.292 115

Galileo

GTRF

6 378 136.55

1/298.257 690 000

3.986 004 418

7.292 115 146 7

GLONASS

PZ90

6 378 136.00

1/298.257 839 303

3.986 004 418

7.292 115

                                             表3  各坐標(biāo)系統(tǒng)基本大地參數(shù)[4-9]

北斗坐標(biāo)系(BeiDou coordinate system, BDCS)是1個(gè)地心地固的地球參考系統(tǒng)。BDCS的定義符合國(guó)際地球自轉(zhuǎn)服務(wù)(international Earth rotation service, IERS)規(guī)范,采用的是2000中國(guó)大地坐標(biāo)系(China geodetic coordinate system 2000, CGCS2000)的參考橢球參數(shù),與CGCS2000的主要差別在于更新頻度。BDCS為BDS的專(zhuān)用坐標(biāo)系,可每年或半年更新1次;CGCS2000為國(guó)家坐標(biāo)系,關(guān)聯(lián)面較廣,更新間隔很長(zhǎng)。BDCS的實(shí)現(xiàn)將與[敏感詞]的國(guó)際地球參考框架(international terrestrial reference frame, ITRF)對(duì)齊。WGS84(world geodetic system 84)是美國(guó) GPS 采用的大地坐標(biāo)系統(tǒng);GTRF(Galileo terrestrial reference frame)是歐盟Galileo采用的大地坐標(biāo)系統(tǒng);PZ-90(PZ-90 geodetic system)是俄羅斯建立的大地坐標(biāo)系統(tǒng)。


3.2  時(shí)間系統(tǒng)對(duì)比分析


時(shí)間系統(tǒng)為衛(wèi)星導(dǎo)航系統(tǒng)的核心,是衛(wèi)星導(dǎo)航系統(tǒng)正常運(yùn)行的基石。BDS、GPS和Galileo均建立了基于原子時(shí)(atomic time, AT)的專(zhuān)用時(shí)間系統(tǒng),它們的秒長(zhǎng)分別根據(jù)安裝在其地面監(jiān)測(cè)站上的原子鐘和衛(wèi)星原子鐘的觀測(cè)量綜合得出,本質(zhì)上仍然是原子時(shí),因此是連續(xù)的,無(wú)需像協(xié)調(diào)世界時(shí)一樣有閏秒。GLONASS系統(tǒng)時(shí)(GLONASS system time,GLONASST) 與其他3種系統(tǒng)時(shí)不同,它是1個(gè)與協(xié)調(diào)世界時(shí)(coordinated universal time, UTC)類(lèi)似的原子時(shí)系統(tǒng),在運(yùn)行時(shí)引入閏秒,以莫斯科時(shí)間為基準(zhǔn),溯源到俄羅斯時(shí)間計(jì)量研究所保持的協(xié)調(diào)世界時(shí)UTC(SU)。北斗時(shí)(BeiDou time, BDT)由BDS主控站產(chǎn)生并保持,溯源到國(guó)家授時(shí)中心保持的協(xié)調(diào)世界時(shí)UTC(NTSC)。GPS時(shí)(GPS time, GPST)由GPS主控站產(chǎn)生并保持,溯源到美國(guó)海軍天文臺(tái)保持的協(xié)調(diào)世界時(shí)UTC(USNO)[12]。Galileo時(shí)(Galileo time, GST)直接溯源到國(guó)際計(jì)量局(International Bureau of Weights and Measures, BIPM)保持的協(xié)調(diào)世界時(shí)UTC(BIPM)。國(guó)際原子時(shí)(international atomic time, TAI)以原子秒為單位,從世界時(shí)(universal time, UT)1958-01-01零時(shí)開(kāi)始累積,此時(shí)世界時(shí)與國(guó)際原子時(shí)的差異為零,然后逐年增大。1972年,為協(xié)調(diào)國(guó)際原子時(shí)和世界時(shí)之間的差異,提出了1種折中方案,即協(xié)調(diào)世界時(shí)。協(xié)調(diào)世界時(shí)以[敏感詞]的TAI秒長(zhǎng)為基礎(chǔ),當(dāng)它與世界時(shí)的差距超過(guò)0.9 s時(shí),則采用閏秒的方式人為加入1 s,使世界時(shí)與協(xié)調(diào)世界時(shí)的差異始終保持在0.9 s內(nèi)[13]。4大衛(wèi)星導(dǎo)航系統(tǒng)的系統(tǒng)時(shí)間對(duì)比如表4所示。


衛(wèi)星導(dǎo)航
系統(tǒng)名稱(chēng)

不同衛(wèi)星導(dǎo)航系統(tǒng)的時(shí)間系統(tǒng)參數(shù)

時(shí)間系統(tǒng)名稱(chēng)

起始?xì)v元

是否連續(xù)

滯后TAI的時(shí)間/s

BDS

BDT

2006-01-01 00:00:00(UTC)

33

GPS

GPST

1980-01-06 00:00:00(UTC)

19

Galileo

GST

1999-08-22 00:00:00(UTC)前13 s

19

GLONASS

GLONASST

滯后UTC(SU) 3 h

隨閏秒變化

                                                      表4 GNSS時(shí)間系統(tǒng)對(duì)比

根據(jù)對(duì)比分析,GST起始?xì)v元設(shè)為1999-08-22T 00:00:00(UTC)前13 s,是為了和GPST保持一致,GST和GPST均滯后TAI 19 s。

各系統(tǒng)時(shí)之間的轉(zhuǎn)換關(guān)系如圖1所示。


1  系統(tǒng)時(shí)間轉(zhuǎn)換關(guān)系


4  GNSS服務(wù)性能對(duì)比分析


衛(wèi)星導(dǎo)航系統(tǒng)的服務(wù)性能包括精度、完好性、連續(xù)性和可用性,其中用戶最關(guān)注的為精度和可用性。服務(wù)精度包括定位精度、測(cè)速精度和測(cè)時(shí)精度。定位精度為用戶使用衛(wèi)星信號(hào)確定的位置與其真實(shí)位置之差的統(tǒng)計(jì)值,包括水平定位精度和垂直定位精度。測(cè)速精度為用戶使用衛(wèi)星信號(hào)確定的速度與其真實(shí)速度之差的統(tǒng)計(jì)值,一般為3維空間速度誤差。測(cè)時(shí)精度為使用衛(wèi)星信號(hào)確定的時(shí)間與衛(wèi)星導(dǎo)航系統(tǒng)時(shí)間之差的統(tǒng)計(jì)值。服務(wù)可用性為系統(tǒng)可服務(wù)時(shí)間與期望服務(wù)時(shí)間之比??煞?wù)時(shí)間為指定區(qū)域范圍內(nèi)位置精度衰減因子(position dilution of precision, PDOP)可用性和定位可用性滿足要求的時(shí)間。PDOP可用性為指定的地理或空間區(qū)域和時(shí)間段內(nèi),PDOP值滿足門(mén)限要求的時(shí)間百分比。定位可用性為指定的服務(wù)區(qū)域和時(shí)間段內(nèi),定位精度滿足門(mén)限值要求的時(shí)間百分比。導(dǎo)航系統(tǒng)的定位精度主要由2方面因素決定:①PDOP值;②用戶等效距離誤差(user equivalent range error, UERE)。UERE由用戶測(cè)距誤差(user range error, URE)和用戶設(shè)備誤差(user equipment error, UEE)組成。其中:URE是由導(dǎo)航衛(wèi)星軌道和衛(wèi)星鐘差的誤差引起的衛(wèi)星至用戶終端距離觀測(cè)量的誤差和,主要由衛(wèi)星導(dǎo)航大系統(tǒng)決定;UEE是由地面多路徑效應(yīng)和用戶接收機(jī)環(huán)路噪聲等引起的誤差,主要由使用環(huán)境和本地接收機(jī)的設(shè)計(jì)決定。根據(jù)BDS、GPS、Galileo和GLONASS的服務(wù)性能規(guī)范和[敏感詞]官方會(huì)議資料[3,14-17],對(duì)各全球衛(wèi)星導(dǎo)航系統(tǒng)的公開(kāi)服務(wù)性能參數(shù)進(jìn)行梳理,結(jié)果如表5所示。表5中,RMS(root mean square)表示均方根。


系統(tǒng)名

URE/m

URRE/(m·s-1)

95 %可靠性下的定位精度/m

測(cè)速精度/
(m·s-1)

95 %可靠性下
的測(cè)時(shí)精度/ns

水平方向

高程方向

BDS

B1C/B2a:0.6(RMS)

0.006(RMS)

10

10

0.2(95 %)
可靠性下的結(jié)果

20  

B1I/B3I:1(RMS)

GPS

95 %可靠性下的結(jié)果為7.8

95 %可靠性下的結(jié)果為0.006

9

15

0.1

40  

Galileo

95 %可靠性下的結(jié)果為7

4

8

30  

GLONASS

95 %可靠性下的結(jié)果為18

95 %可靠性下的結(jié)果為0.02

5

9

700  

                                                 表5  GMSS公開(kāi)服務(wù)性能參數(shù)

事實(shí)上,各衛(wèi)星導(dǎo)航系統(tǒng)的實(shí)測(cè)性能均優(yōu)于承諾的公開(kāi)服務(wù)性能。根據(jù)2019年第14屆全球衛(wèi)星導(dǎo)航系統(tǒng)國(guó)際委員會(huì)(international committee on global navigation satellite system, ICG)會(huì)議中國(guó)衛(wèi)星管理辦公室的報(bào)告
[18],BDS B1I/B3I的實(shí)測(cè)水平定位精度為3.6 m(95 %可靠性下的結(jié)果)、高程定位精度為6.6 m(95 %可靠性下的結(jié)果)、測(cè)速精度為0.05 m/s(95 %可靠性下的結(jié)果)、定時(shí)精度為9.8 ns(95 %可靠性下的結(jié)果),B1C/B2a的實(shí)測(cè)水平定位精度為2.4 m(95 %可靠性下的結(jié)果)、高程定位精度為4.3 m(95 %可靠性下的結(jié)果)、測(cè)速精度為0.06 m/s(95 %可靠性下的結(jié)果)、定時(shí)精度為19.1 ns(95 %可靠性下的結(jié)果)。根據(jù)2019年第14屆ICG會(huì)議國(guó)家協(xié)調(diào)辦公室(National Coordination Office, NCO)的報(bào)告[19],從2018-11-14—2019-11-13的統(tǒng)計(jì)結(jié)果顯示,GPS的平均URE為0.514 m、最優(yōu)天URE為0.362 m、最差天URE為0.666 m。根據(jù)2019年第14屆ICG會(huì)議歐洲航天局的報(bào)告[20-21],2019年9月統(tǒng)計(jì)的Galileo衛(wèi)星URE為0.27 m(95 %可靠性下的結(jié)果),在赤道地區(qū)監(jiān)測(cè)的最差定位精度為2.79 m(95 %可靠性下的結(jié)果)。

5  結(jié)束語(yǔ)


本文對(duì)現(xiàn)有的4大GNSS進(jìn)行了詳細(xì)對(duì)比,分析了系統(tǒng)的星座特點(diǎn),指出了BOS MEO/ IGSO/GEO組合星座的優(yōu)勢(shì);總結(jié)了各導(dǎo)航系統(tǒng)的信號(hào)體制,突出了多系統(tǒng)兼容互操作以及BDS信息編碼的優(yōu)勢(shì);對(duì)各系統(tǒng)的坐標(biāo)系和時(shí)間系統(tǒng)進(jìn)行了對(duì)比分析;分析了衛(wèi)星導(dǎo)航系統(tǒng)的服務(wù)性能,并對(duì)各導(dǎo)航系統(tǒng)的服務(wù)性能參數(shù)進(jìn)行了匯總。通過(guò)對(duì)比分析可知:BDS全球化后,其技術(shù)先進(jìn)、功能齊備、性能優(yōu)異,與GPS和Galileo具有極好的兼容與互操作性,且擁有完全自主知識(shí)產(chǎn)權(quán),處于與GPS并跑階段,為BDS走向世界、成為國(guó)際主流提供了重要保障。隨著國(guó)家在資源和人力方面的持續(xù)大力投入,預(yù)期在不遠(yuǎn)的將來(lái),BDS將領(lǐng)跑?chē)?guó)外的GNSS。

本文轉(zhuǎn)載自“測(cè)繪學(xué)術(shù)資訊”,支持保護(hù)知識(shí)產(chǎn)權(quán),轉(zhuǎn)載請(qǐng)注明原出處及作者。如有侵權(quán)請(qǐng)聯(lián)系我們刪除  
友情鏈接: 站點(diǎn)地圖 Kinghelm 金航標(biāo)官網(wǎng) 薩科微官網(wǎng) 薩科微英文站
主站蜘蛛池模板: 日本精高清区一 | 在线看片亚洲 | 日本在线观看免费视频 | 国产精品久久久久久久久久久久久久 | 欧美激情亚洲一区中文字幕 | 精品精品国产高清a毛片 | 91成人精品| 嫩草影院ncyy在线观看 | 亚洲国产片在线观看 | 成人a站 | 精品一区二区三区高清免费不卡 | 欧美色视频日本片免费高清 | 成年视频国产免费观看 | 怡红院免费va男人的天堂 | 99视频在线播放 | 欧美日韩a级片 | 国产精品久久久久国产精品三级 | 一级一黄在线观看视频免费 | 国产自在自线午夜精品视频在 | 亚洲国产欧美国产综合一区 | 大片刺激免费播放视频 | 日本一区二区三区不卡在线视频 | 国产成人高清精品免费5388密 | 欧美日韩一区二区视频图片 | 99久久精品自在自看国产 | 午夜在线播放免费人成无 | 国产色司机在线视频免费观看 | 日本欧美一区二区 | 成年人免费观看的视频 | 国产大乳孕妇喷奶水在线观看 | 国产美女拍拍拍在线观看 | 91日本在线观看亚洲精品 | 亚洲女人被黑人猛躁进女人 | 国产精品揄拍一区二区久久 | 涩里番资源网站在线观看 | 激情6月丁香婷婷色综合 | 国产日韩欧美精品一区二区三区 | 国产一级一片免费播放视频 | 国产一级一片免费播放 | 国产天堂亚洲精品 | 亚洲国产成人久久三区 |